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Abstract
We present probabilistic projections of 21st century climate change over Northern Eurasia
using the Massachusetts Institute of Technology (MIT) Integrated Global System Model
(IGSM), an integrated assessment model that couples an Earth system model of intermediate
complexity with a two-dimensional zonal-mean atmosphere to a human activity model.
Regional climate change is obtained by two downscaling methods: a dynamical downscaling,
where the IGSM is linked to a three-dimensional atmospheric model, and a statistical
downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate
models. This framework allows for four major sources of uncertainty in future projections of
regional climate change to be accounted for: emissions projections, climate system parameters
(climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability,
and structural uncertainty. The results show that the choice of climate policy and the climate
parameters are the largest drivers of uncertainty. We also find that different initial conditions
lead to differences in patterns of change as large as when using different climate models.
Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia,
emphasizing the need to consider these sources of uncertainty when modeling climate impacts
over Northern Eurasia.

Keywords: probabilistic climate projections, uncertainty, climate change, regional climate
change, Northern Eurasia, climate sensitivity, natural variability, climate models, emissions
scenarios

1. Introduction

Northern Eurasia accounts for 60% of the land area north
of 40◦N and includes roughly 70% of the Earth’s boreal
forest and more than two-thirds of the Earth’s permafrost [1].
As a result, the region is a major player in the global
carbon budget. Over the past century, Northern Eurasia has
experienced dramatic climate change, such as significant
increases in temperature, growing season length, floods and
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droughts [2, 3]. These changes have large environmental and
socioeconomic impacts including forest fires [4], permafrost
thaw [5], extensive land-use change and water management
projects [1]. Further climate change could lead to significant
releases of greenhouse gas (carbon dioxide and methane) to
the atmosphere caused by severe permafrost thaw, increasing
forest fires, changes in lake and wetland dynamics and
changes in land cover. This implies a potential positive
feedback cycle. For this reason, it is imperative to quantify the
full range of possible climate change over Northern Eurasia.

There is a large uncertainty in future projections
of global climate change (see literature review in [6])
and regional climate change [7–9] associated with the
uncertainty in, among others, internal variability [10–12],
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climate sensitivity [13–15], model uncertainty [16, 17],
and scenario uncertainty [18, 19]. Other attempts to derive
probabilistic forecasts of regional climate change include [20,
21]. When it comes to climate change impacts over Northern
Eurasia, recent studies include rising methane emissions [22],
vegetation change [23, 24], agroclimatic potential [25] and
near-surface permafrost degradation [26]. However, these
studies, along with many others focused on Northern Eurasia
or other regions, generally rely on a small ensemble of climate
simulations that does not cover the full range of uncertainty. In
particular, such studies do not consider all the major sources
of uncertainty in future projections of climate change, and
thus are likely to underestimate the range of climate change
and its impacts over the region.

In this study, we attempt to simulate possible future
climate change over Northern Eurasia, by computing prob-
abilistic projections of 21st century surface air temperature
and precipitation changes and considering four major sources
of uncertainty, namely: (i) uncertainty in the emissions
projections, using different climate policies; (ii) uncertainty
in the climate system response, represented by different
values of climate parameters (climate sensitivity, strength
of the aerosol forcing, ocean heat uptake rate); (iii) natural
variability, obtained by initial condition perturbation; and
(iv) structural uncertainty using different climate models. Our
focus is the Northern Eurasian Earth Science Partnership
Initiative (NEESPI) domain, which extends from 15◦E in the
west to the Pacific coast in the east and from 40◦N in the south
to the Arctic ocean coast in the north.

2. Methodology

2.1. Modeling framework

This work uses the Massachusetts Institute of Technology
(MIT) Integrated Global System Model (IGSM) [27, 6],
an integrated assessment model that couples an Earth
System Model of Intermediate Complexity (EMIC), with
a two-dimensional zonal-mean atmosphere, to a human
activity model. The IGSM includes a representation of
terrestrial water, energy, and ecosystem processes, global
scale and urban chemistry including 33 chemical species,
carbon and nitrogen cycle, thermodynamical sea ice, and
ocean processes. The IGSM has been used in EMIC
intercomparison exercises [28, 29] as well as to perform
probabilistic projections based on uncertainties in emissions
and climate parameters [6, 19]. In version 2.2, the IGSM
uses a two-dimensional mixed layer anomaly diffusive ocean
model. In version 2.3, the IGSM uses a three-dimensional
dynamical ocean model based on the MIT ocean general
circulation model [30, 31]. Different versions of the ocean
model exist with different values of the diapycnal diffusivity,
which leads to different rates of ocean heat uptake. In the
IGSM2.3, heat and freshwater fluxes are anomaly coupled
in order to simulate a realistic ocean state. Observed wind
stress from six-hourly National Centers for Environmental
Prediction (NCEP) reanalysis [32] is used to more realistically
capture surface wind forcing over the ocean. For any given

model calendar year, a random calendar year of wind stress
data is applied to the ocean in order to ensure that both
short-term and interannual variability are represented in the
ocean’s surface forcing. Different random sampling can be
applied to simulate different natural variability [33].

Regional climate change is then obtained from IGSM
simulations using two downscaling methods. A dynamical
downscaling method relies on the MIT IGSM–CAM
framework [33] that links the IGSM version 2.3 to
the National Center for Atmospheric Research (NCAR)
Community Atmosphere Model (CAM) version 3.1 [34].
New modules were developed and implemented in CAM to
allow climate parameters to be changed to match those of
the IGSM. In particular, the climate sensitivity of CAM is
changed using a cloud radiative adjustment method [35]. In
the IGSM–CAM framework, CAM is driven by greenhouse
gas concentrations and aerosol loading computed by the
IGSM model, as well as by IGSM sea surface temperature
(SST) anomalies. Because the IGSM–CAM relies on one
single atmospheric model and because the cloud radiative
adjustment method used to change the climate sensitivity
does not provide enough difference in the patterns of regional
climate change (unlike the perturbed physics approach),
we explore the uncertainty in regional patterns of change
using a pattern scaling approach based on projections
from different climate models. This statistical downscaling
method is based on a Taylor-expansion pattern scaling
algorithm [17] that extends the latitudinal projections of the
IGSM two-dimensional zonal-mean atmosphere by applying
longitudinally resolved climate patterns from observations
and from climate model projections from the Coupled Model
Intercomparison Project phase 3 (CMIP3). The representation
of feedbacks in the pattern scaling method is limited to the
choice and the configuration of the CMIP3 models. This
two-pronged approach simulates regional climate change at
2◦× 2.5◦ resolution based on IGSM probabilistic projections.
It has been used successfully in previous work on the United
States [9].

2.2. Description of the simulations

In this study, we analyze two emissions scenarios cor-
responding to a median unconstrained emissions (UCE)
scenario where no policy is implemented after 2012 and a
stabilization scenario where greenhouse gases are stabilized
at 550 ppm CO2 (660 ppm CO2-equivalent) by 2100. The
stabilization scenario corresponds to the level 2 stabilization
(L2S) described in [36]. The UCE and L2S scenarios are
similar to, respectively, the Representative Concentration
Pathways RCP8.5 and RCP4.5 scenarios [18]. A more
in-depth comparison with the RCP scenarios can be found
in [33].

First, probability density functions of climate parameters
(climate sensitivity, strength of the aerosol forcing, ocean heat
uptake rate) are computed by running a large ensemble of the
20th century climate with the IGSM and comparing the output
with observations, while accounting for errors in observation
and natural variability [37]. Then, for each emissions scenario,
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a 400-member ensemble simulation with the IGSM2.2
is run with Latin hypercube sampling (LHS) of climate
parameters from their probability density functions [6, 19].
The uncertainty in the carbon cycle is also taken into
account by varying the rate of carbon uptake by the ocean
and terrestrial ecosystem. This approach is in line with the
development of prior distributions used to run large ensemble
of future climate projections, described in [38]. Pattern scaling
is then applied to each IGSM2.2 ensemble member based on
the patterns of climate change of 17 CMIP3 climate models,
following [17]. The resulting meta-ensemble is viewed as
a ‘hybrid frequency distribution’ (HFD) that integrates the
uncertainty in the IGSM ensemble and in the regional patterns
of climate change of different climate models. Each model is
weighed equally, similarly to [16].

Additional simulations are conducted with the
IGSM–CAM framework in order to complement the statistical
downscaling with simulations using a three-dimensional
atmospheric model. To limit the number of IGSM–CAM
simulations, we use one particular version of the IGSM2.3
with an ocean heat uptake rate that lies between the mode
and the median of the marginal posterior probability density
function obtained with the IGSM in [13]. Then we choose
three values of climate sensitivity (CS) that correspond to
the 5th percentile (CS = 2.0 ◦C), median (CS = 2.5 ◦C),
and 95th percentile (CS = 4.5 ◦C) of the marginal
posterior probability density function with uniform prior
(integrated over the net aerosol forcing). The values of climate
sensitivity agree well with the conclusions of the Fourth
Assessment Report (AR4) of the Intergovernmental Panel
on Climate Change (IPCC), which finds that the climate
sensitivity is likely to lie in the range of 2.0–4.5 ◦C [39].
The value of the net aerosol forcing is then chosen from
the bivariate marginal posterior probability density function
with uniform prior for the climate sensitivity-net aerosol
forcing (CS-Faer) parameter space [33], with the objective to
provide the best agreement with the observed 20th century
climate change. The values for the net aerosol forcing are
−0.25 W/m2,−0.55 W/m2 and −0.85 W/m2, respectively,
for CS = 2.0 ◦C, CS = 2.5 ◦C, CS = 4.5◦. These three sets
of climate parameters are shown [33] to reproduce the median,
and the 5th and 95th percentiles of the probability distribution
of 21st century global mean temperature change obtained
in the IGSM ensembles previously mentioned [6]. We refer
to these simulations are low, median and high IGSM–CAM
simulations. Finally, 5-member ensembles were carried out
for each choice of climate parameters and emissions scenarios
using different initial conditions and random wind sampling
(referred to as initial conditions in the remainder of the paper).
Further details on the IGSM–CAM simulations used in this
study can be found in [33].

In total, this study is based on 13 600 IGSM–HFD
simulations and 30 IGSM–CAM simulations, providing an
unprecedented ensemble of simulations using both dynamical
and statistical downscaling. It should be noted that the
probabilities of future climate projections presented in this
study are dependent on the choice of climate model due to
structural irreducible errors [38]. From here on, we refer to

IGSM–HFD simulations corresponding to the 5th, median
and 95th percentile of the NEESPI mean distribution of
temperature or precipitation as, respectively, low, median and
high IGSM–HFD simulations.

3. Results

Figure 1 shows 21st century time series of NEESPI
mean surface air temperature and precipitation anomalies
from present day for the IGSM–CAM and IGSM–HFD
simulations. Even though the low, median and high
simulations for each downscaling method are obtained from
different distributions (NEESPI mean for IGSM–HFD and
climate sensitivity for IGSM–CAM), the NEESPI means
simulated by the two methods show a good agreement,
especially for temperature. For precipitation, the IGSM–CAM
tends to simulate stronger increases in precipitation than the
IGSM–HFD simulations, most notably for the stabilization
scenario. That is because the IGSM–HFD takes into account
multiple models, some with lesser tendencies for increases
in precipitation over Northern Eurasia than CAM. Overall,
both downscaling methods show a large range of future
warming (from 4.5 to 10.0 ◦C and from 2.0 to 4.0 ◦C
for, respectively, the unconstrained and the stabilization
scenario) and moistening (from 0.2 to 0.5 mm/day and from
0.05 to 0.25 mm/day for, respectively, the unconstrained
and the stabilization scenario) over the NEESPI region.
The stabilization scenario is always associated with a
significant reduction in future climate change compared to
the unconstrained emissions scenario. It should be noted
that all of the IGSM–HFD simulations exhibit warming
and moistening for both emissions scenarios, indicating
the robustness of these tendencies amongst the CMIP3
climate models over the region. In addition, the IGSM–CAM
simulations exhibit a much larger year-to-year variability
than the IGSM–HFD, even in the mean of the 5-member
ensemble based on different initial conditions. That is because
the variability in the IGSM–HFD is solely driven by the
IGSM two-dimensional atmosphere, thus underestimating
local variability over the NEESPI region. The envelope of
the 30 detrended IGSM–CAM simulations, which shows the
unforced natural variability, shows a good agreement with
the observed variability in NEESPI mean temperature and
precipitation anomalies from 2000 to 2010. Finally, figure 1
reveals that the separation between the climate change and
the unforced natural variability occurs at different times for
temperature and precipitation, for each emissions scenario,
and for the low, median and high simulations. In particular, the
emergence of the anthropogenic signal from the noise occurs
sooner for temperature than precipitation, and sooner for the
unconstrained emissions than for the stabilization scenario.
For the unconstrained emissions scenario, the warming
emerges between 2020 and 2030 (based on both IGSM–CAM
and IGSM–HFD low, median and high simulations) and the
moistening between 2035 and 2055. For the stabilization
scenario, the warming emerges between 2020 and 2040 and
the moistening as early as 2030 and not quite yet by 2100 for
the IGSM–HFD simulations.
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Figure 1. IGSM–CAM and IGSM–HFD changes in NEESPI mean surface air temperature under (a) UCE scenario and (b) L2S scenario
and in NEESPI mean total precipitation under (c) UCE scenario and (d) L2S scenario from the 1991–2010 base period. Light gray (dark
gray) denotes the full range (90% probability interval) of the IGSM–HFD simulations while the white line shows the median. Blue, green
and red lines show the 5-member ensemble mean of the IGSM–CAM simulations for the low, median and high values of climate sensitivity
chosen in this study. The orange dashed lines show the minimum and maximum changes over all detrended (by removing the 5-member
ensemble mean for each value of climate sensitivity) IGSM–CAM simulations, thus representing the envelope of natural variability. The
black lines represent observations, the Goddard Institute for Space Studies (GISS) surface temperature (GISTEMP) [41] and the 20th
Century Reanalysis V2 precipitation [42].

Another analysis comparing NEESPI mean changes
in temperature and precipitation between the IGSM–CAM
and IGSM–HFD is presented in figure 2. We compare
IGSM–HFD frequency distributions of NEESPI mean
temperature and precipitation changes for various periods
of the 21st century with respect to present day to the
range obtained from the IGSM–CAM simulations. Figure 2
further demonstrates the broad agreement between the two
downscaling methods and the large range of plausible future
warming and moistening over Northern Eurasia. A further
analysis (not shown) reveals that the frequency distributions
generally display a positive skewness and kurtosis (relative to
the normal distribution). The positive skewness and kurtosis
increase as the projections extend into the 21st century,
and are larger for the unconstrained emissions scenario.
The IGSM–CAM simulations also exhibit positive skewness,
although it is more pronounced than for the IGSM–HFD.
This can be explained by the fact that the IGSM–CAM
simulations only consider one value of ocean heat uptake rate
and that the marginal posterior probability density function
with uniform prior for the climate sensitivity-net aerosol
forcing (CS-Faer) parameter space for this particular value of

ocean heat uptake rate is itself skewed [33]. Figure 2 also
illustrates the overestimation of precipitation increases from
the IGSM–CAM compared to the IGSM–HFD. In addition, it
shows that the full range of the IGSM–CAM simulations in
the earlier part of the 21st century, largely driven by natural
variability, can be as wide as the full range of the IGSM–HFD
simulations. This suggests that the role of natural variability
in driving the range of probable NEESPI regional changes
is not negligible, especially for projections over the next few
decades.

The regional patterns of change over the NEESPI
region simulated by the IGSM–CAM and IGSM–HFD
approaches are then investigated. Figures 3 and 4 show
maps of, respectively, 21st century changes in temperature
and precipitation for the low, median and high simulations.
Regional patterns of temperature changes agree well
between the IGSM–CAM and IGSM–HFD, with the largest
warming in the northern parts of the NEESPI region. For
precipitation, there is also a broad agreement in the pattern of
drying/moistening between the two downscaling approaches,
with some drying in Eastern Europe and the southern
parts of the NEESPI region and moistening in the northern
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Figure 2. Hybrid frequency distributions (line plots) of changes in NEESPI mean surface air temperature and NEESPI mean total
precipitation from the 1991–2010 base period along with the range obtained from the IGSM–CAM simulations (box plots). The box plots
represent the changes obtained from the IGSM–CAM 5-member ensemble mean simulations with the low, median and high climate
sensitivity while the horizontal line shows the minimum and maximum changes obtained among all individual IGSM–CAM simulations.
Changes for different periods are shown with different colors: 2021–2040 mean (blue), 2041–2060 mean (green), 2061–2080 mean (orange)
and 2081–2100 mean (red).

parts. The IGSM–CAM simulations show similar patterns of
temperature and precipitation changes, with larger magnitudes
for higher climate sensitivities and emissions. This is because
the IGSM–CAM relies on a single atmospheric model
and because figures 3 and 4 show the average over the
five initial conditions. Averaging over the different initial
conditions filters out most of the natural variability, leaving
only the human induced climate response, which displays
similar patterns of change even with different values of
climate sensitivity [35]. On the other hand, the IGSM–HFD
simulations show larger differences in the patterns of change
because they consider multiple models and thus include
structural uncertainty.

Figure 5 shows the impact of the initial conditions within
the IGSM–CAM framework. Maps of 21st century changes in
temperature and precipitation for the median simulation under
the stabilization scenario and for different initial conditions
reveal the significant role of natural variability in future
climate projections over Northern Eurasia. With different
initial conditions, the simulations show similar magnitudes
in temperature and precipitation changes but very different

patterns. The location of the maximum warming can differ
significantly, from European Russia (initial condition 3) to
Eastern Siberia (initial condition 5). Precipitation patterns
are also strongly influenced by the initial conditions, with
a significantly different extent of the drying pattern found
over Eastern Europe and the southern parts of the NEESPI
region. The location of the maximum moistening can vary
widely, from Scandinavia (initial condition 4) to Northern
China (initial condition 2). The impact of the model pattern
in the IGSM–HFD approach is analyzed by plotting the
median simulation under the stabilization scenario and the
four surrounding simulations, corresponding to the 50.02th,
50.01th, 49.99th and 49.98th percentiles of the NEESPI
mean distribution (figure 6). The NEESPI mean of these five
simulations is virtually identical and each simulation could
be considered as the median. However, the associated pattern
of change is often very different because the corresponding
model used in the pattern scaling method is different.
This leads to differences in temperature patterns similar
to the initial condition analysis, with different locations of
the maximum warming. For precipitation changes, the five
IGSM–HFD simulations show less discrepancies than the
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Figure 3. Maps of changes in surface air temperature for the period 2081–2100 relative to the 1991–2010 base period for both
IGSM–CAM and IGSM–HFD simulations. For IGSM–CAM simulations, the 5-member ensemble mean for the high (HIGH), median
(MED) and low (LOW) climate sensitivity are shown for the UCE and L2S scenarios. For the IGSM–HFD, the simulations corresponding to
the 5th percentile (LOW), median (MED) and 95th percentile (HIGH) of the hybrid frequency distribution of NEESPI mean changes are
shown for the UCE and L2S scenarios. The IGSM run number and model pattern are listed for the IGSM–HFD simulations plotted.

Figure 4. Same as figure 3 but for precipitation.
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Figure 5. Maps of IGSM–CAM changes in surface air temperature and total precipitation for the period 2081–2100 relative to the
1991–2010 base period for the 5 simulations with different initial conditions for the median (MED) climate sensitivity and L2S scenario.

Figure 6. Maps of IGSM–HFD changes in surface air temperature and total precipitation for the period 2081–2100 relative to the
1991–2010 base period corresponding to the median (50th) of the hybrid frequency distribution of NEESPI mean changes, along with the
four simulations bounding the median (50.02th, 50.01th, 49.99th and 49.98th) for the L2S scenario. The IGSM run number and model
pattern are listed for the IGSM–HFD simulations plotted.
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initial condition analysis, largely because three out of the five
simulations rely on the same model, and because the other
two are based on models that seem to have similar patterns
of precipitation changes over Northern Eurasia. This is a
surprising result that shows that the uncertainty in regional
climate change simulated by ensembles based on initial
condition perturbation and multimodel ensembles seems to
compare well over Northern Eurasia.

4. Summary and conclusion

In this study, we present probabilistic projections of climate
change over Northern Eurasia (NEESPI region) using the
MIT IGSM downscaled via both a dynamical method (the
IGSM–CAM framework) and a statistical method (pattern
scaling). The analysis of the very large ensemble of
simulations (a total of 13 630 simulations) shows that the
uncertainty in the choice of policy and in the climate
response (climate sensitivity, strength of the aerosol forcing
and ocean heat uptake rate) results in a wide range of probable
outcomes. It further shows that simulations with different
initial conditions can lead to different patterns of change (even
in the 20-year mean changes), as different as using different
models. This is especially true for lower values of climate
sensitivity and emissions scenarios with stringent stabilization
of greenhouse gases. In addition, the precipitation change
signal for the low simulation and stabilization scenario has
not emerged from the noise even by 2100. The role of
the uncertainty in natural variability shown in this study is
in agreement with [11] that shows that natural variability
contributes substantially to the uncertainty in climate change
projections. This result also suggests that, for simulations
with a relatively small warming (low climate response and
small greenhouse gas radiative forcing), an ensemble based on
initial condition perturbation could potentially be used within
a single model as a substitute for a multimodel ensemble, even
for end-of-century projections. However, this study suggests
that at the scale of Northern Eurasia, the choice of policy
is the largest source of uncertainty, followed by the climate
parameters. This is in agreement with the findings of [9]
for the United States. This findings is especially true for
long-term projections that extend past 2050. Generally, the
temporal changes in the contributions of the various sources
of uncertainty are consistent with the works of [7] and [8].

It should be mentioned that this study suffers from
limitations, such as the relatively low resolution of the
IGSM–CAM and IGSM–HFD simulations or the absence
of possible feedbacks (e.g., land-use change, aerosol–cloud
interactions. . . ). Also, not all sources of uncertainty are
considered, such as the uncertainty arising from different
model resolution or the uncertainty involved in the pattern
scaling method itself. Nevertheless, in light of these
projections, it appears obvious that Northern Eurasia is at
risk of substantial climate warming if mitigation policies
are not implemented. Based on recent observed trends,
such warming could lead to further widespread permafrost
degradation and more intense and frequent forest fires [4], and
potentially result in the release of large amounts of carbon

and methane [40]. The simulations with different emissions
scenarios, values of climate parameters, initial conditions and
models show consistent patterns of drying in the southern
parts of the NEESPI region, especially over Eastern Europe,
and moistening over the rest of the region. These pronounced
features indicate potential predictability in future precipitation
changes over the region.

Overall, we recommend that when investigating climate
change impacts over Northern Eurasia, studies consider at
least the four sources of uncertainty analyzed in this study,
namely: (i) uncertainty in the emissions projections, using
different climate policies; (ii) uncertainty in the climate
system response, represented by different values of climate
parameters; (iii) natural variability, using different initial
conditions; and (iv) structural uncertainty using different
climate models. Furthermore, we suggest that probabilistic
projections be used to drive impact models, even though
we realize it would require large computing capabilities
and would put a larger burden on impact modeling groups.
Nonetheless, in light of this study, it appears evident that
uncertainty in regional climate change projections is still large
and should be accounted for systematically when estimating
regional climate impacts. Because uncertainty in future
climate projections is conditional on the methodological
choice to derive probabilistic distributions and is affected
by the model used, any impact analysis should explore
the sensitivity of its results to different methodologies and
models.
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